论文标题
超导光电环神经元的现象学模型
Phenomenological Model of Superconducting Optoelectronic Loop Neurons
论文作者
论文摘要
超导光电环神经元是一类可能有利于大规模人工认知网络的电路。这些电路采用超导组件,包括单光子探测器,约瑟夫森连接和变压器来实现神经形态功能。迄今为止,所有循环神经元的模拟都使用第一原理电路分析来建模突触,树突和神经元的行为。这些电路模型在计算上效率低下,并且不透明环路神经元与其他复杂系统之间的关系。在这里,我们介绍了一个建模框架,该框架捕获了相关突触,树突状和神经元电路在现象学层面的行为,而无需诉诸全电路方程。在这个紧凑的模型中,发现了每个树突以服从单个非线性泄漏整合器的普通微分方程,而神经元被建模为具有阈值元素的树突和建立难治性周期的附加反馈机制。突触被建模为单光子检测器,耦合到树突,在那里单光子检测器的响应遵循封闭形式的表达。我们量化了现象学模型相对于电路模拟的准确性,并发现该方法将计算时间降低了一倍,同时将一部分的精度保持在一万中。我们证明了模型与几个基本示例的使用。计算效率的净增加可以使大型网络的未来模拟,而该公式为应用数学,计算神经科学和物理系统(例如旋转眼镜)的大量工作提供了联系。
Superconducting optoelectronic loop neurons are a class of circuits potentially conducive to networks for large-scale artificial cognition. These circuits employ superconducting components including single-photon detectors, Josephson junctions, and transformers to achieve neuromorphic functions. To date, all simulations of loop neurons have used first-principles circuit analysis to model the behavior of synapses, dendrites, and neurons. These circuit models are computationally inefficient and leave opaque the relationship between loop neurons and other complex systems. Here we introduce a modeling framework that captures the behavior of the relevant synaptic, dendritic, and neuronal circuits at a phenomenological level without resorting to full circuit equations. Within this compact model, each dendrite is discovered to obey a single nonlinear leaky-integrator ordinary differential equation, while a neuron is modeled as a dendrite with a thresholding element and an additional feedback mechanism for establishing a refractory period. A synapse is modeled as a single-photon detector coupled to a dendrite, where the response of the single-photon detector follows a closed-form expression. We quantify the accuracy of the phenomenological model relative to circuit simulations and find that the approach reduces computational time by a factor of ten thousand while maintaining accuracy of one part in ten thousand. We demonstrate the use of the model with several basic examples. The net increase in computational efficiency enables future simulation of large networks, while the formulation provides a connection to a large body of work in applied mathematics, computational neuroscience, and physical systems such as spin glasses.