论文标题

一种简单有效的方法,用于改善零拍的跨语性转移学习

A Simple and Effective Method to Improve Zero-Shot Cross-Lingual Transfer Learning

论文作者

Ding, Kunbo, Liu, Weijie, Fang, Yuejian, Mao, Weiquan, Zhao, Zhe, Zhu, Tao, Liu, Haoyan, Tian, Rong, Chen, Yiren

论文摘要

现有的零击跨语性转移方法依赖于平行的语料库或双语词典,这些词典对于低资源语言来说是昂贵且不切实际的。为了脱离这些依赖关系,研究人员探索了有关仅英语资源的培训多语言模型,并将其转移到低资源语言中。但是,其效果受到嵌入不同语言的簇之间的差距的限制。为了解决这个问题,我们提出了嵌入式 - 注意力,注意力和健壮的目标,以将英语嵌入到虚拟的多语言嵌入中而无需语义损失,从而提高了跨语义的可传递性。对Mbert和XLM-R的实验结果表明,我们的方法在零拍的跨语性文本分类任务上的先前作品明显优于以前的作品,并且可以获得更好的多语言对齐。

Existing zero-shot cross-lingual transfer methods rely on parallel corpora or bilingual dictionaries, which are expensive and impractical for low-resource languages. To disengage from these dependencies, researchers have explored training multilingual models on English-only resources and transferring them to low-resource languages. However, its effect is limited by the gap between embedding clusters of different languages. To address this issue, we propose Embedding-Push, Attention-Pull, and Robust targets to transfer English embeddings to virtual multilingual embeddings without semantic loss, thereby improving cross-lingual transferability. Experimental results on mBERT and XLM-R demonstrate that our method significantly outperforms previous works on the zero-shot cross-lingual text classification task and can obtain a better multilingual alignment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源