论文标题

在Presburger中汇编Petri Net互助性

Compiling Petri Net Mutual Reachability in Presburger

论文作者

Leroux, Jérôme

论文摘要

培养皿网是一种在正式验证中广泛使用和研究的经典并发模型,并在建模和分析硬件和软件,数据库和反应性系统中进行了许多应用。可及性问题是中心的,因为许多其他问题减少了可达性问题。可及性问题是可决定的,但其复杂性极高(非原始递归)。在2011年,可及性问题的一种变体称为相互可及性问题,其中包括确定是否可以相互启用两种配置。最近,这个问题在人口协议理论中发现了一些意外的应用。虽然已知相互达到的问题在诱惑算术中可以定义,但最近证明,这种公式最著名的上限是非元素(塔)。在本文中,我们提供了一种将$ d $ counter的Petri网络的相互可及性关系汇编成一个无量词的前汉堡公式,作为$ o(d)$指数级的双向指数划分。我们还提供了有关编码底部配置的Presburger公式的一些首先结果。

Petri nets are a classical model of concurrency widely used and studied in formal verification with many applications in modeling and analyzing hardware and software, data bases, and reactive systems. The reachability problem is central since many other problems reduce to reachability questions. The reachability problem is known to be decidable but its complexity is extremely high (non primitive recursive). In 2011, a variant of the reachability problem, called the mutual reachability problem, that consists in deciding if two configurations are mutually reachable was proved to be exponential-space complete. Recently, this problem found several unexpected applications in particular in the theory of population protocols. While the mutual reachability problem is known to be definable in the Preburger arithmetic, the best known upper bound of such a formula was recently proved to be non-elementary (tower). In this paper we provide a way to compile the mutual reachability relation of a Petri net with $d$ counters into a quantifier-free Presburger formula given as a doubly exponential disjunction of $O(d)$ linear constraints of exponential size. We also provide some first results about Presburger formulas encoding bottom configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源