论文标题

机器学习优化的钙钛矿纳米片合成

Machine-Learning-Optimized Perovskite Nanoplatelet Synthesis

论文作者

Lampe, Carola, Kouroudis, Ioannis, Harth, Milan, Martin, Stefan, Gagliardi, Alessio, Urban, Alexander S.

论文摘要

随着对可再生能源和有效设备的需求迅速增加,因此需要找到和优化新颖的(NANO)材料。这可能是一个非常乏味的过程,通常很大程度上依赖于反复试验。机器学习最近成为一种有力的选择。但是,大多数方法都需要大量的数据点,即合成。在这里,我们将三个机器学习模型与贝叶斯优化合并,并能够仅使用大约200个总合成来显着提高CSPBBR3纳米片(NPLS)的质量。该算法可以基于前体比率预测NPL分散剂的最大PL发射最大值,从而导致先前无法获得的7和8 mL NPL。在启发式知识的帮助下,该算法应容易适用于其他纳米晶体合成,并大大有助于识别有趣的构图并迅速提高其质量。

With the demand for renewable energy and efficient devices rapidly increasing, a need arises to find and optimize novel (nano)materials. This can be an extremely tedious process, often relying significantly on trial and error. Machine learning has emerged recently as a powerful alternative; however, most approaches require a substantial amount of data points, i.e., syntheses. Here, we merge three machine-learning models with Bayesian Optimization and are able to dramatically improve the quality of CsPbBr3 nanoplatelets (NPLs) using only approximately 200 total syntheses. The algorithm can predict the resulting PL emission maxima of the NPL dispersions based on the precursor ratios, which lead to previously unobtainable 7 and 8 ML NPLs. Aided by heuristic knowledge, the algorithm should be easily applicable to other nanocrystal syntheses and significantly help to identify interesting compositions and rapidly improve their quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源