论文标题

解开奖励成型:了解奖励工程对样本复杂性的好处

Unpacking Reward Shaping: Understanding the Benefits of Reward Engineering on Sample Complexity

论文作者

Gupta, Abhishek, Pacchiano, Aldo, Zhai, Yuexiang, Kakade, Sham M., Levine, Sergey

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Reinforcement learning provides an automated framework for learning behaviors from high-level reward specifications, but in practice the choice of reward function can be crucial for good results -- while in principle the reward only needs to specify what the task is, in reality practitioners often need to design more detailed rewards that provide the agent with some hints about how the task should be completed. The idea of this type of ``reward-shaping'' has been often discussed in the literature, and is often a critical part of practical applications, but there is relatively little formal characterization of how the choice of reward shaping can yield benefits in sample complexity. In this work, we build on the framework of novelty-based exploration to provide a simple scheme for incorporating shaped rewards into RL along with an analysis tool to show that particular choices of reward shaping provably improve sample efficiency. We characterize the class of problems where these gains are expected to be significant and show how this can be connected to practical algorithms in the literature. We confirm that these results hold in practice in an experimental evaluation, providing an insight into the mechanisms through which reward shaping can significantly improve the complexity of reinforcement learning while retaining asymptotic performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源