论文标题

从文本角度探测跨模式语义的对准能力

Probing Cross-modal Semantics Alignment Capability from the Textual Perspective

论文作者

Ma, Zheng, Zong, Shi, Pan, Mianzhi, Zhang, Jianbing, Huang, Shujian, Dai, Xinyu, Chen, Jiajun

论文摘要

近年来,视觉和语言预训练(VLP)模型已提出了最先进的结果,从而导致了各种跨模式下游任务。据称,对齐跨模式语义是VLP模型的重要功能之一。但是,对于VLP模型中对齐的内部工作机理仍然不清楚。在本文中,我们提出了一种基于图像字幕的新探测方法,以首先研究VLP模型的跨模式语义比对。我们的探测方法是基于以下事实:鉴于图像捕获对,VLP模型将给出得分,表明两种模态的排列程度如何;最大化此类分数将产生VLP模型认为是良好对齐的句子。因此,分析这些句子的分析将揭示以何种方式对齐不同方式以及在VLP模型中这些比对的效果。我们将探测方法应用于五个流行的VLP模型,包括Uniter,Rosita,Vilbert,Clip和LXMERT,并对这些模型指导的产生字幕进行了全面分析。我们的结果表明,VLP模型(1)更多地关注仅将对象与视觉单词对齐,同时忽略了全局语义; (2)更喜欢固定的句子模式,因此忽略了更重要的文本信息,包括流利和语法; (3)认为带有更多视觉单词的字幕可以更好地与图像对齐。这些发现表明,VLP模型在跨模式语义对齐中仍然存在弱点,我们希望这项工作将在设计新的VLP模型时吸引研究人员对此类问题的关注。

In recent years, vision and language pre-training (VLP) models have advanced the state-of-the-art results in a variety of cross-modal downstream tasks. Aligning cross-modal semantics is claimed to be one of the essential capabilities of VLP models. However, it still remains unclear about the inner working mechanism of alignment in VLP models. In this paper, we propose a new probing method that is based on image captioning to first empirically study the cross-modal semantics alignment of VLP models. Our probing method is built upon the fact that given an image-caption pair, the VLP models will give a score, indicating how well two modalities are aligned; maximizing such scores will generate sentences that VLP models believe are of good alignment. Analyzing these sentences thus will reveal in what way different modalities are aligned and how well these alignments are in VLP models. We apply our probing method to five popular VLP models, including UNITER, ROSITA, ViLBERT, CLIP, and LXMERT, and provide a comprehensive analysis of the generated captions guided by these models. Our results show that VLP models (1) focus more on just aligning objects with visual words, while neglecting global semantics; (2) prefer fixed sentence patterns, thus ignoring more important textual information including fluency and grammar; and (3) deem the captions with more visual words are better aligned with images. These findings indicate that VLP models still have weaknesses in cross-modal semantics alignment and we hope this work will draw researchers' attention to such problems when designing a new VLP model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源