论文标题

用于改进视频内容评论的人类ML协作框架

A Human-ML Collaboration Framework for Improving Video Content Reviews

论文作者

Deodhar, Meghana, Ma, Xiao, Cai, Yixin, Koes, Alex, Beutel, Alex, Chen, Jilin

论文摘要

我们处理视频内容审核域中本地化视频内分类学人类注释的问题,目的是确定违反粒度策略的视频段,例如在线视频平台上的社区准则。高质量的人类标签对于执行内容适度至关重要。由于信息超负荷的问题,这是具有挑战性的 - 评估者需要在有限的审查持续时间内对相对较长的视频应用大量的侵犯颗粒状政策违规分类法。我们的关键贡献是一种新型的人机学习(ML)协作框架,旨在在这种情况下最大化人类决策的质量和效率 - 人类标签用于训练细分市场级别的模型,这些模型以特定的政策违规行为表明视频的可能区域显示为“提示为“提示”的“提示”,以表明视频的可能区域。人类经过验证/校正的片段标签可以帮助进一步完善模型,从而创建人类ML阳性反馈循环。实验表明,通过在类似的审查持续时间内提交的更多颗粒状注释来提高了人类视频的决策质量以及效率,这使提示生成模型的AUC可以提高5-8%。

We deal with the problem of localized in-video taxonomic human annotation in the video content moderation domain, where the goal is to identify video segments that violate granular policies, e.g., community guidelines on an online video platform. High quality human labeling is critical for enforcement in content moderation. This is challenging due to the problem of information overload - raters need to apply a large taxonomy of granular policy violations with ambiguous definitions, within a limited review duration to relatively long videos. Our key contribution is a novel human-machine learning (ML) collaboration framework aimed at maximizing the quality and efficiency of human decisions in this setting - human labels are used to train segment-level models, the predictions of which are displayed as "hints" to human raters, indicating probable regions of the video with specific policy violations. The human verified/corrected segment labels can help refine the model further, hence creating a human-ML positive feedback loop. Experiments show improved human video moderation decision quality, and efficiency through more granular annotations submitted within a similar review duration, which enable a 5-8% AUC improvement in the hint generation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源