论文标题

变形的转置卷积

Deformably-Scaled Transposed Convolution

论文作者

Blumberg, Stefano B., Raví, Daniele, Xu, Mou-Cheng, Figini, Matteo, Kokkinos, Iasonas, Alexander, Daniel C.

论文摘要

转置卷积对于产生高分辨率输出至关重要,但与卷积层相比,人们几乎没有关注。在这项工作中,我们重新访问了卷积,并引入了一个新颖的层,使我们可以选择性地将信息放置在图像中,并选择合成图像的“卒中宽度”,同时产生小的附加参数成本。为此,我们介绍了三个想法:首先,我们将偏移回归到放置转置卷积结果的位置;其次,我们在一个可学习的社区上广播了偏移重量位置。第三,我们使用紧凑的参数化来共享权重和限制偏移。我们表明,只需用新的层代替上取样的运算符,可以在各个任务中产生实例分割,对象检测,语义分割,生成图像建模和3D磁共振图像增强的大量改进,同时超过了所有现有的转换激发变体。我们的新颖层可以用作2D和3D UPSMPLING操作员的倒数替换,并且该代码将公开使用。

Transposed convolution is crucial for generating high-resolution outputs, yet has received little attention compared to convolution layers. In this work we revisit transposed convolution and introduce a novel layer that allows us to place information in the image selectively and choose the `stroke breadth' at which the image is synthesized, whilst incurring a small additional parameter cost. For this we introduce three ideas: firstly, we regress offsets to the positions where the transpose convolution results are placed; secondly we broadcast the offset weight locations over a learnable neighborhood; and thirdly we use a compact parametrization to share weights and restrict offsets. We show that simply substituting upsampling operators with our novel layer produces substantial improvements across tasks as diverse as instance segmentation, object detection, semantic segmentation, generative image modeling, and 3D magnetic resonance image enhancement, while outperforming all existing variants of transposed convolutions. Our novel layer can be used as a drop-in replacement for 2D and 3D upsampling operators and the code will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源