论文标题
识别,放大和测量:通向高斯差异隐私的桥梁
Identification, Amplification and Measurement: A bridge to Gaussian Differential Privacy
论文作者
论文摘要
高斯差异隐私(GDP)是一个单参数的隐私概念家族,可提供连贯的保证,以避免暴露敏感的个人信息。尽管GDP组成下有额外的解释性和更严格的界限,但许多广泛使用的机制(例如,拉普拉斯机制)固有地提供了GDP保证,但通常无法利用这种新框架,因为它们的隐私保证是在不同的背景下得出的。在本文中,我们研究了隐私概况的渐近特性,并制定了一个简单的标准来识别具有GDP特性的算法。我们提出了一种有效的GDP算法方法,以缩小最佳隐私测量值的可能值,$μ$,具有任意且可量化的误差余量。对于非GDP算法,我们提供了一个后处理程序,可以放大现有的隐私保证以满足GDP条件。作为应用程序,我们比较了两个单参数概念的单参数家族,$ε$ -DP和$μ$ -GDP,并表明所有$ε$ -DP算法也本质上都是GDP。最后,我们表明,与传统的标准和高级构图定理相比,我们的测量过程和GDP的组成定理的组合是处理构图的功能强大且方便的工具。
Gaussian differential privacy (GDP) is a single-parameter family of privacy notions that provides coherent guarantees to avoid the exposure of sensitive individual information. Despite the extra interpretability and tighter bounds under composition GDP provides, many widely used mechanisms (e.g., the Laplace mechanism) inherently provide GDP guarantees but often fail to take advantage of this new framework because their privacy guarantees were derived under a different background. In this paper, we study the asymptotic properties of privacy profiles and develop a simple criterion to identify algorithms with GDP properties. We propose an efficient method for GDP algorithms to narrow down possible values of an optimal privacy measurement, $μ$ with an arbitrarily small and quantifiable margin of error. For non GDP algorithms, we provide a post-processing procedure that can amplify existing privacy guarantees to meet the GDP condition. As applications, we compare two single-parameter families of privacy notions, $ε$-DP, and $μ$-GDP, and show that all $ε$-DP algorithms are intrinsically also GDP. Lastly, we show that the combination of our measurement process and the composition theorem of GDP is a powerful and convenient tool to handle compositions compared to the traditional standard and advanced composition theorems.