论文标题

太阳重力模式的振幅:评论

Amplitudes of Solar Gravity Modes: A Review

论文作者

Belkacem, Kévin, Pinçon, Charly, Buldgen, Gaël

论文摘要

太阳重力模式被认为是{\ it rosetta石},用于探测和破译太阳能内部层的物理特性。因此,最近的阳性检测主张为估计太阳重力模式振幅的长期存在的问题提供了一些新的启示。在本文中,我们的目标是回顾旨在预测太阳重力模式幅度的理论努力。由于这些研究中的大多数都假定对观察到的声学模式的类似驾驶和阻尼特性,因此我们还简要概述了我们在太阳和太阳能恒星中这些模式的当前知识(显示出太阳能振荡),然后才介入太阳能模式的特定问题问题。最后,考虑到最近的估计,我们得出结论并确认低频域(通常在$ 10 \ $ $ $ Hz和$ 100 \,μ$ Hz之间)肯定更适合于检测太阳重力模式。更确切地说,大约$ 60 \μ$ Hz,理论估计值略低于高尔夫(低频下的全球振荡)仪器提供的观测检测阈值,仅约为两个。这通常在与理论估计相关的当前不确定性范围内,应该激励我们提高整个太阳对流区域的湍流知识,这对于提高$ G $ - 莫德振幅估计的准确性至关重要。最近检测到太阳惯性模式(Gizon等,2021)与数值模拟的持续发展相结合,为将来的研究提供了有趣的前景。

Solar gravity modes are considered as the {\it Rosetta Stone} for probing and subsequently deciphering the physical properties of the solar inner-most layers. Recent claims of positive detection therefore shed some new light on the long-standing issue of estimating solar gravity mode amplitudes. In this article, our objective is to review the theoretical efforts intended to predict solar gravity mode amplitudes. Because most of these studies assumed analogous driving and damping properties to those for the observed acoustic modes, we also provide a short overview of our current knowledge for these modes in the Sun and solar-type stars (which show solar-like oscillations) before diving into the specific problem of solar gravity modes. Finally, taking recent estimates into account, we conclude and confirm that the low-frequency domain (typically between $10\,μ$Hz and $100\,μ$Hz) is certainly more suited to focus on for detecting solar gravity modes. More precisely, around $60\,μ$Hz, the theoretical estimates are slightly lower than the observational detection threshold as provided by the GOLF (Global Oscillations at Low Frequencies) instrument by about a factor of two only. This is typically within the current uncertainties associated with theoretical estimates and should motivate us for improving our knowledge on turbulence in the whole solar convective region, which is key for improving the accuracy of $g$-mode amplitude estimates. The recent detection of solar inertial modes (Gizon et al. 2021) combined with the continuous development of numerical simulations provide interesting prospects for future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源