论文标题
使用局部函数对高斯过程地形图的空间可扩展性递归估算
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
论文作者
论文摘要
当代理,人员,车辆或机器人在没有GNSS信号的情况下在未知环境中移动时,当代理返回先前映射的区域时,可以使用非线性地形的在线映射来改善位置估计。使用在线高斯流程(GP)回归的映射算法通常集成在同时本地化和映射(SLAM)的算法中。但是,随着映射区域相对于空间场变化的扩展,GP映射算法的计算需求增加。这是由于需要随着地图面积的增长估算越来越多的MAP参数。与此相反,我们提出了一种递归的GP映射估计算法,该算法使用信息过滤器中的局部基础函数来实现空间可伸缩性。我们提出的近似采用有限支持基础功能的全球网格,但将计算限制为每个预测点围绕局部子集。由于我们提出的算法是递归的,因此可以自然地将其纳入使用高斯工艺图的现有算法中。将我们提出的算法纳入用于磁场的扩展卡尔曼滤波器(EKF)中,可降低算法的整体计算复杂性。我们通过实验表明,当映射区域较大时,我们的算法比现有方法快,并且地图基于许多测量值,包括用于递归映射任务和磁场大满贯。
When an agent, person, vehicle or robot is moving through an unknown environment without GNSS signals, online mapping of nonlinear terrains can be used to improve position estimates when the agent returns to a previously mapped area. Mapping algorithms using online Gaussian process (GP) regression are commonly integrated in algorithms for simultaneous localisation and mapping (SLAM). However, GP mapping algorithms have increasing computational demands as the mapped area expands relative to spatial field variations. This is due to the need for estimating an increasing amount of map parameters as the area of the map grows. Contrary to this, we propose a recursive GP mapping estimation algorithm which uses local basis functions in an information filter to achieve spatial scalability. Our proposed approximation employs a global grid of finite support basis functions but restricts computations to a localized subset around each prediction point. As our proposed algorithm is recursive, it can naturally be incorporated into existing algorithms that uses Gaussian process maps for SLAM. Incorporating our proposed algorithm into an extended Kalman filter (EKF) for magnetic field SLAM reduces the overall computational complexity of the algorithm. We show experimentally that our algorithm is faster than existing methods when the mapped area is large and the map is based on many measurements, both for recursive mapping tasks and for magnetic field SLAM.