论文标题
原子簇扩展,用于量子量的大规模模拟碳
Atomic cluster expansion for quantum-accurate large-scale simulations of carbon
论文作者
论文摘要
我们提出了用于碳的原子簇扩展(ACE),可改善可用的古典和机器学习潜力。 ACE是从使用密度功能理论(DFT)计算出的扩展体积和能量范围内的一组详尽的重要碳结构的参数。严格的验证表明,ACE准确地预测了晶体和无定形碳相的广泛特性,同时比可用的机器学习模型要高出几个数量级。我们证明了ACE对三种不同应用的预测能力,钻石中的脆性裂纹繁殖,不同密度下的无定形碳结构的演变以及在高压和温度条件下的富勒烯簇的淬火速率以及成核和成核和生长。
We present an atomic cluster expansion (ACE) for carbon that improves over available classical and machine learning potentials. The ACE is parameterized from an exhaustive set of important carbon structures at extended volume and energy range, computed using density functional theory (DFT). Rigorous validation reveals that ACE predicts accurately a broad range of properties of both crystalline and amorphous carbon phases while being several orders of magnitude more computationally efficient than available machine learning models. We demonstrate the predictive power of ACE on three distinct applications, brittle crack propagation in diamond, evolution of amorphous carbon structures at different densities and quench rates and nucleation and growth of fullerene clusters under high pressure and temperature conditions.