论文标题
稳定的磁盘共形参数化的共形能量的离散最小化
Stable Discrete Minimization of Conformal Energy for Disk Conformal Parameterization
论文作者
论文摘要
共形能量最小化是计算共形参数化的有效方法。在本文中,我们开发了一种稳定的算法来计算简单连接的开放表面的共形参数化,称为稳定的共形能量的离散最小化(SDMCE)。 SDMCE的稳定性反映在计算参数化的一对一和对属性以及对初始值的不敏感性的保证中。一方面,SDMCE可以避免溶液的变性和重叠,SDMCE也可以折叠。另一方面,即使给出较差的初始值,它仍然可以在很少的计算时间内纠正它。数值实验表明SDMCE在效率方面具有最新的算法稳定且具有竞争力。
Conformal energy minimization is an efficient approach to compute conformal parameterization. In this paper, we develop a stable algorithm to compute conformal parameterization of simply connected open surface, termed Stable Discrete Minimization of Conformal Energy (SDMCE). The stability of SDMCE is reflected in the guarantee of one-to-one and on-to property of computed parameterization and the insensitivity on the initial value. On one hand, SDMCE can avoid degeneration and overlap of solution, also, SDMCE is folding free. On the other hand, even if given poor initial value, it can still correct it in very little computational time. The numerical experiments indicate SDMCE is stable and competitive with state-of-the-art algorithms in efficiency.