论文标题

通过变异工具箱增强的非官方基础状态搜索算法

A non-Hermitian Ground State Searching Algorithm Enhanced by Variational Toolbox

论文作者

Chen, Yu-Qin, Zhang, Shi-Xin, Hsieh, Chang-Yu, Zhang, Shengyu

论文摘要

给定哈密顿量的地面准备工作是一项重要的量子计算任务,具有重要的重要性,并且在量子化学,计算材料建模和组合优化中具有相关的应用。我们考虑了一种使用哈密顿模拟技术模拟耗散性非热汉尔顿量子动力学的方法,以有效地恢复目标hamiltonian的基态。提出的方法通过反复将Ancilla Qubits投射到所需的状态,从而促进了能量转移,从而使有效的非热汉密尔顿汉密尔顿进化在系统量子位上。为了使该方法在嘈杂的中级量子量子(NISQ)和早期容忍时代中更加友好,我们将非富勒的投影算法与多个变异小工具相结合,包括变性模块增强和变异状态记录,以减少所需的电路深度,以降低实用的逐渐消失的成功率,并避免了邮政的成功率。我们将我们的方法与纯变异方法进行比较,即非高性变量算法 - QAOA用于解决3-SAT问题并为横向场ISING模型准备基态。正如数值证据所证明的那样,非热数差异算法在收敛速度方面优于QAOA,并提高了量子资源效率。

Ground-state preparation for a given Hamiltonian is a common quantum-computing task of great importance and has relevant applications in quantum chemistry, computational material modeling, and combinatorial optimization. We consider an approach to simulate dissipative non-Hermitian Hamiltonian quantum dynamics using Hamiltonian simulation techniques to efficiently recover the ground state of a target Hamiltonian. The proposed method facilitates the energy transfer by repeatedly projecting ancilla qubits to the desired state, rendering the effective non-Hermitian Hamiltonian evolution on the system qubits. To make the method more resource friendly in the noisy intermediate-scale quantum (NISQ) and early fault-tolerant era, we combine the non-Hermitian projection algorithm with multiple variational gadgets, including variational module enhancement and variational state recording, to reduce the required circuit depth and avoid the exponentially vanishing success probability for post-selections. We compare our method, the non-Hermitian-variational algorithm, with a pure variational method -- QAOA for solving the 3-SAT problem and preparing the ground state for the transverse-field Ising model. As demonstrated by numerical evidence, the non-Hermitian-variational algorithm outperforms QAOA in convergence speed with improved quantum resource efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源