论文标题
囊泡动力学的通用性通过孔易位
Universality in the dynamics of vesicle translocation through a hole
论文作者
论文摘要
我们通过压力差$ΔP$驱动的球形囊泡的球囊泡的易位过程,该球囊泡的膜和不可压缩的流体。我们表明,这种囊泡显示了某些普遍特征,这些特征与膜弹性的细节无关。 (i)在不发生易位的情况下,有一个临界压力$ΔP_ {\ rm c} $,(ii)$ΔP_ {\ rm c} $减少至零,因为囊泡半径$ r_0 $接近孔radius $ a $ a $ a $ a $ a $ a $ a $ _ $Δp$δp_} a)^{3/2} $,(iii)易位时间$τ$作为$ΔP$减少至$ΔP_ {\ rm c} $,满足缩放关系$τ\ sim(Δp -Δp -Δp -Δp_ {\ rm c})^{\ rm c})
We analyze the translocation process of a spherical vesicle, made of membrane and incompressible fluid, through a hole smaller than the vesicle size, driven by pressure difference $ΔP$. We show that such a vesicle shows certain universal characteristics which is independent of the details of the membrane elasticity; (i) there is a critical pressure $ΔP_{\rm c}$ below which no translocation occurs, (ii) $ΔP_{\rm c}$ decreases to zero as the vesicle radius $R_0$ approaches the hole radius $a$, satisfying the scaling relation $ΔP_{\rm c} \sim (R_0 - a)^{3/2}$, and (iii) the translocation time $τ$ diverges as $ΔP$ decreases to $ΔP_{\rm c}$, satisfying the scaling relation $τ\sim (ΔP -ΔP_{\rm c})^{-1/2}$.