论文标题
计算中的时间分析和性别偏见
Temporal Analysis and Gender Bias in Computing
论文作者
论文摘要
关于计算中性别偏见的最新研究使用了涉及性别自动预测的大数据集,以分析计算出版物,会议和其他关键人群。性别偏见部分由软件驱动的算法分析定义,但是广泛使用的性别预测工具在用于历史研究时可能会导致未被认可的性别偏见。数十年来,许多名字改变了归因于性别:“莱斯利问题”。对社会保障局数据集的系统分析 - 每年,所有给定的名称,均由归因于性别和使用频率确定 - 在1900年,1925年,1950年,1950年,1975年和2000年,允许对“莱斯利问题”进行严格的评估。本文在1925 - 1975年间以可衡量的“性别变化”标识了300个给定名称,从而聚焦了50个给定的名称,并具有最大的此类变化。本文定量地表明,正如计算机科学在专业化的那样,有几十年来,有净的“女性转移”可能导致女性(和男性降低)过度的成产。广泛接受的“制定男性”观点的某些方面可能需要修订。
Recent studies of gender bias in computing use large datasets involving automatic predictions of gender to analyze computing publications, conferences, and other key populations. Gender bias is partly defined by software-driven algorithmic analysis, but widely used gender prediction tools can result in unacknowledged gender bias when used for historical research. Many names change ascribed gender over decades: the "Leslie problem." Systematic analysis of the Social Security Administration dataset -- each year, all given names, identified by ascribed gender and frequency of use -- in 1900, 1925, 1950, 1975, and 2000 permits a rigorous assessment of the "Leslie problem." This article identifies 300 given names with measurable "gender shifts" across 1925-1975, spotlighting the 50 given names with the largest such shifts. This article demonstrates, quantitatively, there is net "female shift" that likely results in the overcounting of women (and undercounting of men) in earlier decades, just as computer science was professionalizing. Some aspects of the widely accepted 'making programming masculine' perspective may need revision.