论文标题

一种简化的算法,用于识别动态网络的异常变化

A Simplified Algorithm for Identifying Abnormal Changes in Dynamic Networks

论文作者

Azamir, Bouchaib, Bennis, Driss, Michel, Bertrand

论文摘要

拓扑数据分析最近已应用于动态网络的研究。在这种情况下,引入了一种算法并有助于检测研究动态网络异常变化的预警信号。然而,一旦研究数据库的增长,该算法的复杂性就会显着增加。在本文中,我们提出了对算法的简化,而不会影响其性能。我们在某些加权网络上提供了新算法的各种应用和模拟。获得的结果清楚地表明了引入方法的效率。此外,在某些情况下,拟议的算法使得可以强调当地信息,有时甚至是局部异常变化的预警信号。

Topological data analysis has recently been applied to the study of dynamic networks. In this context, an algorithm was introduced and helps, among other things, to detect early warning signals of abnormal changes in the dynamic network under study. However, the complexity of this algorithm increases significantly once the database studied grows. In this paper, we propose a simplification of the algorithm without affecting its performance. We give various applications and simulations of the new algorithm on some weighted networks. The obtained results show clearly the efficiency of the introduced approach. Moreover, in some cases, the proposed algorithm makes it possible to highlight local information and sometimes early warning signals of local abnormal changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源