论文标题

预测场景历史的人类轨迹

Forecasting Human Trajectory from Scene History

论文作者

Meng, Mancheng, Wu, Ziyan, Chen, Terrence, Cai, Xiran, Zhou, Xiang Sean, Yang, Fan, Shen, Dinggang

论文摘要

由于人类运动的随机性和主观性,预测人的未来轨迹仍然是一个具有挑战性的问题。但是,由于场景限制以及人身人或人对象的互动性,在受限的场景中,人类的移动模式通常符合有限数量的规律性。因此,在这种情况下,个人也应遵循其中一个规律性。换句话说,一个人随后的轨迹很可能被别人旅行了。基于这一假设,我们建议通过从隐式场景规律中学习人的未来轨迹来预测一个人的未来轨迹。我们称之为规律,固有地源自场景中的人们和环境的过去动态,场景历史。我们将场景历史信息分为两种类型:历史群体轨迹和个体符号相互作用。为了利用这两种类型的信息进行轨迹预测,我们提出了一个新颖的框架场景历史记录网络(Shenet),其中场景历史记录以一种简单而有效的方法利用。特别是,我们设计了两个组件:组轨迹库模块以提取代表性的组轨迹作为未来路径的候选者,以及跨模式相互作用模块,以模拟单个过去轨迹与其周围环境之间的相互作用,以进行轨迹细化。此外,为了减轻由上述人类运动的随机性和主观性引起的地面轨迹的不确定性,我们建议将平滑度包括在训练过程和评估指标中。我们进行了广泛的评估,以验证我们提出的框架对ETH,UCY以及一种新的,具有挑战性的基准数据集PAV的功效,与最先进的方法相比,表现出了卓越的性能。

Predicting the future trajectory of a person remains a challenging problem, due to randomness and subjectivity of human movement. However, the moving patterns of human in a constrained scenario typically conform to a limited number of regularities to a certain extent, because of the scenario restrictions and person-person or person-object interactivity. Thus, an individual person in this scenario should follow one of the regularities as well. In other words, a person's subsequent trajectory has likely been traveled by others. Based on this hypothesis, we propose to forecast a person's future trajectory by learning from the implicit scene regularities. We call the regularities, inherently derived from the past dynamics of the people and the environment in the scene, scene history. We categorize scene history information into two types: historical group trajectory and individual-surroundings interaction. To exploit these two types of information for trajectory prediction, we propose a novel framework Scene History Excavating Network (SHENet), where the scene history is leveraged in a simple yet effective approach. In particular, we design two components: the group trajectory bank module to extract representative group trajectories as the candidate for future path, and the cross-modal interaction module to model the interaction between individual past trajectory and its surroundings for trajectory refinement. In addition, to mitigate the uncertainty in ground-truth trajectory, caused by the aforementioned randomness and subjectivity of human movement, we propose to include smoothness into the training process and evaluation metrics. We conduct extensive evaluations to validate the efficacy of our proposed framework on ETH, UCY, as well as a new, challenging benchmark dataset PAV, demonstrating superior performance compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源