论文标题
CONREEDER:探索合同条款提取合同中的隐式关系
ConReader: Exploring Implicit Relations in Contracts for Contract Clause Extraction
论文作者
论文摘要
我们通过对法律合同中的隐式关系进行建模来研究自动合同条款提取(CCE)。现有的CCE方法主要将合同视为纯文本,从而为理解高复杂性的合同带来了重大障碍。在这项工作中,我们首先全面分析合同的复杂性问题,并提取合同中常见的三个隐性关系,即1)捕获遥远条款相关性的远程背景关系; 2)定期定义关系,捕获了重要条款与其相应定义之间的关系; 3)相似的子句关系,捕获了同一类型的子句之间的相似性。然后,我们提出了一个新颖的框架,以利用上述三个关系,以更好地理解和改善CCE。实验结果表明,Conreader使预测更加可解释,并在常规和零摄影设置中的两个CCE任务上实现了新的最新技术。
We study automatic Contract Clause Extraction (CCE) by modeling implicit relations in legal contracts. Existing CCE methods mostly treat contracts as plain text, creating a substantial barrier to understanding contracts of high complexity. In this work, we first comprehensively analyze the complexity issues of contracts and distill out three implicit relations commonly found in contracts, namely, 1) Long-range Context Relation that captures the correlations of distant clauses; 2) Term-Definition Relation that captures the relation between important terms with their corresponding definitions; and 3) Similar Clause Relation that captures the similarities between clauses of the same type. Then we propose a novel framework ConReader to exploit the above three relations for better contract understanding and improving CCE. Experimental results show that ConReader makes the prediction more interpretable and achieves new state-of-the-art on two CCE tasks in both conventional and zero-shot settings.