论文标题
时间空间依赖性增强了家庭杠杆系列预测的深度学习模型(TSEN)
Temporal-Spatial dependencies ENhanced deep learning model (TSEN) for household leverage series forecasting
论文作者
论文摘要
分析时间和空间模式为财务时间序列的准确预测模型预测是一个挑战,这是一个挑战,这是一个挑战,这是时间空间动力学的复杂性质:来自不同位置的时间序列通常具有不同的模式;在同一时间序列中,随着时间的流逝,模式可能会有所不同。受深度学习成功应用的启发,我们提出了一种新模型,以解决中国预测家庭杠杆的问题。我们的解决方案由多个基于RNN的层和一个注意力层组成:每个基于RNN的层自动学习具有多元外源序列的特定系列的时间模式,然后注意力层学习空间相关权重,并同时获得全局表示。结果表明,新方法可以很好地捕获家庭利益的时间空间动力学,并获得更准确和稳定的预测结果。更重要的是,模拟还表明,需要聚类和选择相关序列以获得准确的预测结果。
Analyzing both temporal and spatial patterns for an accurate forecasting model for financial time series forecasting is a challenge due to the complex nature of temporal-spatial dynamics: time series from different locations often have distinct patterns; and for the same time series, patterns may vary as time goes by. Inspired by the successful applications of deep learning, we propose a new model to resolve the issues of forecasting household leverage in China. Our solution consists of multiple RNN-based layers and an attention layer: each RNN-based layer automatically learns the temporal pattern of a specific series with multivariate exogenous series, and then the attention layer learns the spatial correlative weight and obtains the global representations simultaneously. The results show that the new approach can capture the temporal-spatial dynamics of household leverage well and get more accurate and solid predictive results. More, the simulation also studies show that clustering and choosing correlative series are necessary to obtain accurate forecasting results.