论文标题

学习进行采样和汇总:时间知识图上的几乎没有推理

Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graphs

论文作者

Wang, Ruijie, Li, Zheng, Sun, Dachun, Liu, Shengzhong, Li, Jinning, Yin, Bing, Abdelzaher, Tarek

论文摘要

在本文中,我们调查了一个现实但毫无疑问的问题,称为少数时间知识图推理,旨在根据不断发展的图表中的观察值极为有限地预测新出现的实体的未来事实。它为需要在时间知识图(TKG)中获得有关新实体的新知识的应用程序提供实用价值,并以最少的监督。这些挑战主要来自新实体的少量和时间变化属性。首先,与之相关的有限观察结果不足以从头开始训练模型。其次,从最初可观察到的事实到未来事实的潜在动态分布要求明确建模新实体的不断发展特征。我们相应地提出了一个新型的元时间知识图(metatkgr)框架。与先前依靠僵化的社区聚合方案来增强低数据实体表示的工作不同,Metatkgr通过对新实体的最新事实进行了采样和汇总邻居的策略,并通过对未来事实的暂时监督信号作为即时反馈。此外,这种元时间推理过程超出了静态知识图上现有的元学习范式,这些范式无法使用大实体差异处理时间适应。我们进一步提供了理论分析,并提出了时间适应性适时器,以稳定随时间推移的元时间推理。从经验上讲,对三个现实世界TKG的广泛实验表明,Metatkgr优于最先进的基线的优势。

In this paper, we investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning, that aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs. It offers practical value in applications that need to derive instant new knowledge about new entities in temporal knowledge graphs (TKGs) with minimal supervision. The challenges mainly come from the few-shot and time shift properties of new entities. First, the limited observations associated with them are insufficient for training a model from scratch. Second, the potentially dynamic distributions from the initially observable facts to the future facts ask for explicitly modeling the evolving characteristics of new entities. We correspondingly propose a novel Meta Temporal Knowledge Graph Reasoning (MetaTKGR) framework. Unlike prior work that relies on rigid neighborhood aggregation schemes to enhance low-data entity representation, MetaTKGR dynamically adjusts the strategies of sampling and aggregating neighbors from recent facts for new entities, through temporally supervised signals on future facts as instant feedback. Besides, such a meta temporal reasoning procedure goes beyond existing meta-learning paradigms on static knowledge graphs that fail to handle temporal adaptation with large entity variance. We further provide a theoretical analysis and propose a temporal adaptation regularizer to stabilize the meta temporal reasoning over time. Empirically, extensive experiments on three real-world TKGs demonstrate the superiority of MetaTKGR over state-of-the-art baselines by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源