论文标题
随机实验中的任何时间 - valid线性模型和回归调整的因果推断
Anytime-Valid Linear Models and Regression Adjusted Causal Inference in Randomized Experiments
论文作者
论文摘要
线性模型是统计学中的基础工具,并且在应用科学中无处不在。但是,传统的统计推断(例如$ t $ - 检验和$ f $ -tests)仅在固定样本尺寸上有效,这使得它们不适合在线A/B测试等顺序设置。我们开发了对线性模型推断的任何时间 - valid理论,引入了经典测试和置信集的顺序类似物,这些类似于I型误差控制和覆盖范围可在所有样本量上均匀保证。我们的构建基于不变足够统计的似然比,得出了普通最小二乘估计器和标准误差的简单闭合形式表达式。对于频繁主义者和贝叶斯替代假设,所得的测试在生长/再生感中都是最佳的。然后,我们放松线性模型假设,以提供异性抗性渐近顺序测试和置信序列,从而在随机对照实验中对因果估计值进行了顺序回归调整的推断。这正式允许连续监测实验的意义,尽早停止,并保障数据收集中的统计弊端。我们通过模拟Netflix的真实A/B测试数据来证明我们的方法的实际实用性。
Linear models are foundational tools in statistics and ubiquitous across the applied sciences. However, conventional statistical inference -- such as $t$-tests and $F$-tests -- are only valid at fixed sample sizes, making them unsuitable for sequential settings such as online A/B testing. We develop an anytime-valid theory of inference for the linear model, introducing sequential analogues of classical tests and confidence sets that provide Type-I error control and coverage guarantees uniformly over all sample sizes. Our construction is based on likelihood ratios of invariantly sufficient statistics, yielding simple closed-form expressions of ordinary least squares estimators and standard errors. The resulting tests are optimal in the GROW/REGROW sense for both frequentist and Bayesian alternative hypotheses. We then relax the linear model assumptions to provide heteroskedasticity-robust asymptotic sequential tests and confidence sequences, which enable sequential regression-adjusted inference for causal estimands in randomized controlled experiments. This formally allows experiments to be continuously monitored for significance, stopped early, and safeguards against statistical malpractices in data collection. We demonstrate the practical utility of our approach through simulations and applications to real A/B test data from Netflix.