论文标题

有效提取浮子热系统的多点相关性

Efficiently Extracting Multi-Point Correlations of a Floquet Thermalized System

论文作者

Zheng, Yong-Guang, Zhang, Wei-Yong, Shen, Ying-Chao, Luo, An, Liu, Ying, He, Ming-Gen, Zhang, Hao-Ran, Lin, Wan, Wang, Han-Yi, Zhu, Zi-Hang, Chen, Ming-Cheng, Lu, Chao-Yang, Thanasilp, Supanut, Angelakis, Dimitris G., Yuan, Zhen-Sheng, Pan, Jian-Wei

论文摘要

多体系统的非平衡动力学对于经典计算具有挑战性,提供了通过模拟量子模拟器来证明实用量子计算优势的机会。有人认为这对于bose-Hubbard系统的样品驱动的热体多体状态和进一步提取多点相关性以表征量子相。在这里,我们通过量子气体显微镜利用专用的精确操作和数量分辨的检测,在热层化相中,我们实现和采样了32个位点驱动的哈伯德链。从实验样品中提取的多达14阶的多点相关性在热化和多体裂解相之间提供了明显的区别。就估计的计算能力而言,量子模拟器与当前已知最佳算法的最快超级计算机相当。我们的工作为模拟多体系统的Floquet动力学铺平了实用量子优势的道路。

Nonequilibrium dynamics of many-body systems is challenging for classical computing, providing opportunities for demonstrating practical quantum computational advantage with analogue quantum simulators. It is proposed to be classically intractable to sample driven thermalized many-body states of Bose-Hubbard systems, and further extract multi-point correlations for characterizing quantum phases. Here, leveraging dedicated precise manipulations and number-resolved detection through a quantum gas microscope, we implement and sample a 32-site driven Hubbard chain in the thermalized phase. Multi-point correlations of up to 14th-order extracted from experimental samples offer clear distinctions between the thermalized and many-body-localized phases. In terms of estimated computational powers, the quantum simulator is comparable to the fastest supercomputer with currently known best algorithms. Our work paves the way towards practical quantum advantage in simulating Floquet dynamics of many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源