论文标题

用于椭圆界面问题的尖端捕获PINN

A cusp-capturing PINN for elliptic interface problems

论文作者

Tseng, Yu-Hau, Lin, Te-Sheng, Hu, Wei-Fan, Lai, Ming-Chih

论文摘要

在本文中,我们提出了尖峰捕获物理信息的神经网络(PINN),以解决不连续的椭圆界面问题,其解决方案是连续的,但在界面上具有不连续的第一衍生物。为了找到使用神经网络表示的解决方案,我们引入了尖式增强的级别设置函数,作为网络的附加功能输入,以保留固有的解决方案属性;也就是说,捕获溶液尖(衍生物是不连续的)。此外,提出的神经网络具有无网状的优势,因此它可以轻松处理不规则域中的问题。我们使用物理知识的框架训练网络,其中损耗函数包括微分方程的残差以及某些界面和边界条件。我们进行了一系列数值实验,以证明尖峰捕获技术的有效性和当前网络模型的准确性。数值结果表明,即使使用具有适量神经元和足够训练数据点的一个隐藏层(浅)网络,本网络模型也可以实现与传统方法相当的预测准确性。此外,如果该解决方案在整个接口上是不连续的,我们可以简单地将解决方案跳跃近似的其他监督学习任务纳入当前网络,而无需太多困难。

In this paper, we propose a cusp-capturing physics-informed neural network (PINN) to solve discontinuous-coefficient elliptic interface problems whose solution is continuous but has discontinuous first derivatives on the interface. To find such a solution using neural network representation, we introduce a cusp-enforced level set function as an additional feature input to the network to retain the inherent solution properties; that is, capturing the solution cusps (where the derivatives are discontinuous) sharply. In addition, the proposed neural network has the advantage of being mesh-free, so it can easily handle problems in irregular domains. We train the network using the physics-informed framework in which the loss function comprises the residual of the differential equation together with certain interface and boundary conditions. We conduct a series of numerical experiments to demonstrate the effectiveness of the cusp-capturing technique and the accuracy of the present network model. Numerical results show that even using a one-hidden-layer (shallow) network with a moderate number of neurons and sufficient training data points, the present network model can achieve prediction accuracy comparable with traditional methods. Besides, if the solution is discontinuous across the interface, we can simply incorporate an additional supervised learning task for solution jump approximation into the present network without much difficulty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源