论文标题

使用语义目标建立可解释的分层代理框架

Towards an Interpretable Hierarchical Agent Framework using Semantic Goals

论文作者

Prakash, Bharat, Waytowich, Nicholas, Oates, Tim, Mohsenin, Tinoosh

论文摘要

学习通过加强学习解决长时间的长时间扩展任务一直是几年来一直是一个挑战。我们认为,重要的是要利用复杂任务的层次结构,并尽可能使用专家监督来解决此类任务。这项工作通过结合计划和语义目标定向增强学习来引入一个可解释的分层代理框架。我们假设访问某些空间和触觉谓词并构建一个简单而强大的语义目标空间。这些语义目标表示更容易解释,从而使专家的监督和干预更加容易。他们还消除了编写复杂而密集的奖励功能的需求,从而减少了人类的工程工作。我们在机器人块操作任务上评估了我们的框架,并表明它的性能比其他方法更好,包括稀疏和密集的奖励功能。我们还建议一些下一步,并讨论该框架如何使与人类的互动和协作更加容易。

Learning to solve long horizon temporally extended tasks with reinforcement learning has been a challenge for several years now. We believe that it is important to leverage both the hierarchical structure of complex tasks and to use expert supervision whenever possible to solve such tasks. This work introduces an interpretable hierarchical agent framework by combining planning and semantic goal directed reinforcement learning. We assume access to certain spatial and haptic predicates and construct a simple and powerful semantic goal space. These semantic goal representations are more interpretable, making expert supervision and intervention easier. They also eliminate the need to write complex, dense reward functions thereby reducing human engineering effort. We evaluate our framework on a robotic block manipulation task and show that it performs better than other methods, including both sparse and dense reward functions. We also suggest some next steps and discuss how this framework makes interaction and collaboration with humans easier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源