论文标题

ROS-KD:嘈杂的医学成像的强大随机知识蒸馏方法

RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging

论文作者

Jaiswal, Ajay, Ashutosh, Kumar, Rousseau, Justin F, Peng, Yifan, Wang, Zhangyang, Ding, Ying

论文摘要

AI驱动的医疗成像最近由于能够提供快节奏的医疗保健诊断的能力而引起了极大的关注。但是,由于高注释成本,观察者间的变异性,人体注释错误和计算机生成的标签错误,通常会遭受缺乏高质量数据集的影响。在嘈杂的标记数据集上训练的深度学习模型对噪声类型敏感,并导致对看不见的样本的概括较少。为了应对这一挑战,我们提出了一个强大的随机知识蒸馏(ROS-KD)框架,该框架模仿了从多个来源学习主题的概念,以确保在学习嘈杂信息时威慑。更具体地说,ROS-KD通过从对培训培训数据的重叠子集中培训的多个教师中提取知识,从而学习了平稳,了解良好且健壮的学生多种多样。我们对使用现实世界数据集的流行医学成像分类任务(心肺疾病和病变分类)进行的广泛实验表明,ROS-KD的性能好处,它可以从许多流行的大型网络(Resnet-50,Densenet-121,Mobilenet-V2,Mobilenet-v2)中提取知识的能力,并在相对小的网络中及其robust and and and and vers andvers和advers andvers andvers and versarial and versarial and versarial and versarial and versarial and pyvers and p. pgd and versarial and pyvers and。更具体地说,ROS-KD分别在针对近期竞争性知识蒸馏基线的近期竞争性知识蒸馏基线时,ROS-KD分别对病变分类和心肺疾病分类任务的F1分数和心肺疾病分类任务的提高> 2%和> 4%。此外,在心肺疾病分类任务上,ROS-KD在AUC评分中的大多数SOTA基本线的表现都高约1%。

AI-powered Medical Imaging has recently achieved enormous attention due to its ability to provide fast-paced healthcare diagnoses. However, it usually suffers from a lack of high-quality datasets due to high annotation cost, inter-observer variability, human annotator error, and errors in computer-generated labels. Deep learning models trained on noisy labelled datasets are sensitive to the noise type and lead to less generalization on the unseen samples. To address this challenge, we propose a Robust Stochastic Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information. More specifically, RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data. Our extensive experiments on popular medical imaging classification tasks (cardiopulmonary disease and lesion classification) using real-world datasets, show the performance benefit of RoS-KD, its ability to distill knowledge from many popular large networks (ResNet-50, DenseNet-121, MobileNet-V2) in a comparatively small network, and its robustness to adversarial attacks (PGD, FSGM). More specifically, RoS-KD achieves >2% and >4% improvement on F1-score for lesion classification and cardiopulmonary disease classification tasks, respectively, when the underlying student is ResNet-18 against recent competitive knowledge distillation baseline. Additionally, on cardiopulmonary disease classification task, RoS-KD outperforms most of the SOTA baselines by ~1% gain in AUC score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源