论文标题
机器学习的爱:用变压器对中子星的状态进行分类
Machine-Learning Love: classifying the equation of state of neutron stars with Transformers
论文作者
论文摘要
研究了音频频谱变压器(AST)模型进行重力波数据分析。 AST机器学习模型是一个无卷积的分类器,它通过纯粹的基于注意力的机制捕获远程全局依赖性。在本文中,一个模型应用于来自二进制中子星结合的Inspiral引力波信号的模拟数据集,该数据集是由核物质的五个不同的状态(EOS)构建的。从每个EOS类的潮汐变形性参数的质量依赖性分析中可以表明,AST模型在正确地从重力波信号中正确分类EOS时实现了有希望的性能,尤其是当二进制系统的组件质量范围为$ [1,1.5] M _ {\ odot}范围。此外,通过使用来自模型训练期间未使用的新EOS的重力波信号来研究模型的概括能力,从而实现了相当令人满意的结果。总体而言,使用简化的无噪声波形设置获得的结果表明,一旦受过训练,AST模型可能会直接从二进制中性星凝聚体产生的Inspiral Rectitation-Wave信号中对冷核物质EOS进行瞬时推断。
The use of the Audio Spectrogram Transformer (AST) model for gravitational-wave data analysis is investigated. The AST machine-learning model is a convolution-free classifier that captures long-range global dependencies through a purely attention-based mechanism. In this paper a model is applied to a simulated dataset of inspiral gravitational wave signals from binary neutron star coalescences, built from five distinct, cold equations of state (EOS) of nuclear matter. From the analysis of the mass dependence of the tidal deformability parameter for each EOS class it is shown that the AST model achieves a promising performance in correctly classifying the EOS purely from the gravitational wave signals, especially when the component masses of the binary system are in the range $[1,1.5]M_{\odot}$. Furthermore, the generalization ability of the model is investigated by using gravitational-wave signals from a new EOS not used during the training of the model, achieving fairly satisfactory results. Overall, the results, obtained using the simplified setup of noise-free waveforms, show that the AST model, once trained, might allow for the instantaneous inference of the cold nuclear matter EOS directly from the inspiral gravitational-wave signals produced in binary neutron star coalescences.