论文标题
摩尔斯:基于深度学习的手臂手势识别搜索和救援操作
MoRSE: Deep Learning-based Arm Gesture Recognition for Search and Rescue Operations
论文作者
论文摘要
在搜索和救援行动中,有效,快速的远程沟通可以为第一响应者提供生命。但是,在基于文本的沟通手段上操作时,图像和音频不适用于几种灾难方案。在本文中,我们提出了一个基于智能手表的应用程序,该应用程序利用了深度学习(DL)模型来识别一组预定义的ARM手势,并通过振动将它们映射到Morse代码中,从而在急救人员之间进行远程通信。通过使用4,200个受试者(交叉验证)戴着智能手表在其主要手臂上进行的4200个手势来评估模型性能。我们的DL模型依赖于卷积合并并超过现有的DL方法和通用机器学习分类器的性能,从而获得了95%以上的手势识别精度。我们通过讨论结果并提供未来的方向来结束。
Efficient and quick remote communication in search and rescue operations can be life-saving for the first responders. However, while operating on the field means of communication based on text, image and audio are not suitable for several disaster scenarios. In this paper, we present a smartwatch-based application, which utilizes a Deep Learning (DL) model, to recognize a set of predefined arm gestures, maps them into Morse code via vibrations enabling remote communication amongst first responders. The model performance was evaluated by training it using 4,200 gestures performed by 7 subjects (cross-validation) wearing a smartwatch on their dominant arm. Our DL model relies on convolutional pooling and surpasses the performance of existing DL approaches and common machine learning classifiers, obtaining gesture recognition accuracy above 95%. We conclude by discussing the results and providing future directions.