论文标题
扩展磁绝缘膜中的非本地木元跨导率。\\第I部分:自旋二极管效应
Non-local magnon transconductance in extended magnetic insulating films.\\ Part I: spin diode effect
论文作者
论文摘要
这篇综述提供了对镁的非线性传输特性的全面研究,该研究是通过Yig $ \ vert $ pt接口通过自旋传输效果在扩展的YIG膜中发射或吸收的。我们的目的是在实验中阐明与电二极管类似的木元跨导通的不对称电变异背后的相关图像。该特征植根于通过镁化学电位的电位移位通过降低旋转激发的密度变化。随着自旋转移的强度在向前方向(木元素发射状态)上增加,低能量木剂的传输特性通过低电流下的3个不同的机制:\ textit {i)},其中自旋电流是电流的线性函数,旋转是弹性传输的,是弹道的,并由膜的厚度设置; \ textit {ii)}对于阻尼补偿阈值的幅度振幅,它可以通过磁杆弛豫过程切换到高度相关的限制,并以镁跨导通的饱和度标记。在这里,控制镁密度的主要偏见是发射极下方的热波动。 \ textit {iii)}随着发射极下的温度接近库里温度,高能量木蛋白散射占主导地位,从而导致扩散运输。我们注意到,这种运输状态序列与Radii Gurzhi预测的超纯化介质中的电子流体动力传输类比。这项研究仅限于镁流形的低能量部分,补充了本评论的第二部分\ cite {kohno_2f},该部分集中在整个繁殖强元中。
This review provides a comprehensive study of the nonlinear transport properties of magnons, which are electrically emitted or absorbed inside extended YIG films by spin transfer effects via a YIG$\vert$Pt interface. Our purpose is to experimentally elucidate the pertinent picture behind the asymmetric electrical variation of the magnon transconductance analogous to an electric diode. The feature is rooted in the variation of the density of low-lying spin excitations via an electrical shift of the magnon chemical potential. As the intensity of the spin transfer increases in the forward direction (regime of magnon emission), the transport properties of low-energy magnon go through 3 distinct regimes: \textit{i)} at low currents, where the spin current is a linear function of the electrical current, the spin transport is ballistic and set by the film thickness; \textit{ii)} for amplitudes of the order of the damping compensation threshold, it switches to a highly correlated regime limited by magnon-magnon relaxation process and marked by a saturation of the magnon transconductance. Here the main bias, that controls the magnon density, are thermal fluctuations beneath the emitter. \textit{iii)} As the temperature under the emitter approaches the Curie temperature, scattering with high-energy magnons dominates, leading to diffusive transport. We note that such sequence of transport regimes bears analogy with electron hydrodynamic transport in ultra-pure media predicted by Radii Gurzhi. This study restricted to low energy part of the magnon manifold complements part II of this review\cite{kohno_2F}, which concentrates instead on the whole spectrum of propagating magnons.