论文标题

通过与协变量的产品分配模型的混合物聚类献血者

Clustering blood donors via mixtures of product partition models with covariates

论文作者

Argiento, Raffaele, Corradin, Riccardo, Guglielmi, Alessandra, Lanzarone, Ettore

论文摘要

由于连续献血之间准确预测差距时间的问题,我们在这里提出了一类贝叶斯非参数模型,用于聚类。这些模型允许预测新复发,适应描述样本个体个人特征的协变量信息。我们介绍了样本个体的随机分区的先验,如果他们具有相似的协变量值,则鼓励两个人共群集。我们先前将PPMX模型推广到文献中,这些模型是根据凝聚力和相似性函数定义的。我们假设具有凝聚力的函数,可以产生PPMX模型的混合物,而我们的相似性函数代表群集的紧凑性。我们表明,在先前的规范中包括协变量信息可以改善后验预测性能,并帮助解释估计的簇,从血液捐赠应用中的协变量来解释。

Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian nonparametric models for clustering. These models allow for prediction of new recurrences, accommodating covariate information that describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals which encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes PPMx models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions which yield mixtures of PPMx models, while our similarity functions represent the compactness of a cluster. We show that including covariate information in the prior specification improves the posterior predictive performance and helps interpret the estimated clusters, in terms of covariates in the blood donation application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源