论文标题

Wehrl纠缠的Segal-Bargmann振荡器的熵

Wehrl entropy of entangled Segal-Bargmann oscillators

论文作者

López, David Alonso, Cembranos, Jose A. R., Díaz-Guerra, David, Sánchez, Andrés Mínguez

论文摘要

在本手稿中,我们研究了纠缠振荡器的WEHRL熵。与量子力学的相位空间描述相关的这种半经典熵可用于制定不确定性关系和纠缠的量化。我们专注于在其Segal-Bargmann空间中描述的两个耦合振荡器的系统。相对于给定的高斯样措施,可集成的全体形态功能的希尔伯特空间特别方便地处理谐波振荡器。的确,石像诺伊曼定理使我们能够在这个空间中与梯子操作员形式主义完全往来。此外,在Segal-Bargmann形式主义中,Husimi伪探针分布直接计算出来。一旦获得Husimi功能,我们就会分析WEHRL熵和互信息。

In this manuscript we study the Wehrl entropy of entangled oscillators. This semiclassical entropy associated with the phase-space description of quantum mechanics can be used for formulating uncertainty relations and for a quantification of entanglement. We focus on a system of two coupled oscillators described within its Segal-Bargmann space. This Hilbert space of holomorphic functions integrable with respect to a given Gaussian-like measure is particularly convenient to deal with harmonic oscillators. Indeed, the Stone-von Neumann theorem allows us to work in this space in a full correspondence with the ladder operators formalism. In addition, the Husimi pseudoprobability distribution is directly computed within the Segal-Bargmann formalism. Once we obtain the Husimi function, we analyze the Wehrl entropy and mutual information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源