论文标题

UNIRPG:统一的离散推理桌面和文本作为程序生成

UniRPG: Unified Discrete Reasoning over Table and Text as Program Generation

论文作者

Zhou, Yongwei, Bao, Junwei, Duan, Chaoqun, Wu, Youzheng, He, Xiaodong, Zhao, Tiejun

论文摘要

需要离散推理的问题回答,例如算术计算,比较和计数,知识是一项具有挑战性的任务。在本文中,我们提出了Unirpg,这是一种基于语义的基于语义的方法,以解释性和可伸缩性为基础,以对异质知识资源(即表和文本)作为程序生成进行统一的离散推理。具体而言,UNIRPG由神经程序员和符号程序执行人组成,其中程序是一组预定的通用原子和高阶操作以及从表格和文本中提取的一组预定的一般原子和高阶操作和参数。首先,程序员通过生成操作和复制参数将问题解析为程序,然后根据程序从表和文本中得出答案。为了减轻昂贵的程序注释问题,我们为程序员学习设计了一种遥远的监督方法,该方法将自动构建伪计划而无需带注释的推导。在TAT-QA数据集上进行的广泛实验表明,与最新方法相比,UNIRPG可以实现巨大的改进,并增强可解释性和可伸缩性,即使没有衍生注释也是如此。此外,它在没有派生的情况下在文本数据集下降上实现了有希望的性能。

Question answering requiring discrete reasoning, e.g., arithmetic computing, comparison, and counting, over knowledge is a challenging task. In this paper, we propose UniRPG, a semantic-parsing-based approach advanced in interpretability and scalability, to perform unified discrete reasoning over heterogeneous knowledge resources, i.e., table and text, as program generation. Concretely, UniRPG consists of a neural programmer and a symbolic program executor, where a program is the composition of a set of pre-defined general atomic and higher-order operations and arguments extracted from table and text. First, the programmer parses a question into a program by generating operations and copying arguments, and then the executor derives answers from table and text based on the program. To alleviate the costly program annotation issue, we design a distant supervision approach for programmer learning, where pseudo programs are automatically constructed without annotated derivations. Extensive experiments on the TAT-QA dataset show that UniRPG achieves tremendous improvements and enhances interpretability and scalability compared with state-of-the-art methods, even without derivation annotation. Moreover, it achieves promising performance on the textual dataset DROP without derivations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源