论文标题
编解码器信息辅助框架,用于有效压缩视频超分辨率
A Codec Information Assisted Framework for Efficient Compressed Video Super-Resolution
论文作者
论文摘要
在线处理压缩视频以提高其分辨率会引起越来越多的关注。视频超分辨率(VSR)使用复发性神经网络体系结构是一个有前途的解决方案,因为它有效地建模了长期时间依赖性。但是,最新的复发性VSR模型仍然需要大量计算才能获得良好的性能,这主要是因为帧/特征对齐的复杂运动估计以及连续视频帧的冗余处理。在本文中,考虑到压缩视频的特征,我们提出了一个编解码器信息辅助框架(CIAF),以增强和加速重复的VSR模型以进行压缩视频。首先,该框架将运动向量的编码视频信息重新建模,以建模相邻帧之间的时间关系。实验表明,具有基于运动矢量的对齐方式的模型可以通过可忽略的附加计算显着提高性能,甚至与使用基于光流的更复杂光流对齐的模型相当。其次,通过进一步利用残差的编码视频信息,可以告知该框架以跳过冗余像素的计算。实验表明,提出的框架可以节省高达70%的计算,而无需在CRF为23时由H.264编码的REDS4测试视频下降。
Online processing of compressed videos to increase their resolutions attracts increasing and broad attention. Video Super-Resolution (VSR) using recurrent neural network architecture is a promising solution due to its efficient modeling of long-range temporal dependencies. However, state-of-the-art recurrent VSR models still require significant computation to obtain a good performance, mainly because of the complicated motion estimation for frame/feature alignment and the redundant processing of consecutive video frames. In this paper, considering the characteristics of compressed videos, we propose a Codec Information Assisted Framework (CIAF) to boost and accelerate recurrent VSR models for compressed videos. Firstly, the framework reuses the coded video information of Motion Vectors to model the temporal relationships between adjacent frames. Experiments demonstrate that the models with Motion Vector based alignment can significantly boost the performance with negligible additional computation, even comparable to those using more complex optical flow based alignment. Secondly, by further making use of the coded video information of Residuals, the framework can be informed to skip the computation on redundant pixels. Experiments demonstrate that the proposed framework can save up to 70% of the computation without performance drop on the REDS4 test videos encoded by H.264 when CRF is 23.