论文标题

深度回归学习

Deep Regression Unlearning

论文作者

Tarun, Ayush K, Chundawat, Vikram S, Mandal, Murari, Kankanhalli, Mohan

论文摘要

随着数据保护和隐私法规的引入,从机器学习(ML)模型中删除数据谱系的谱系至关重要。在过去的几年中,机器上有显着的发展,可以从ML模型中有效,有效地删除某些培训数据的信息。在这项工作中,我们探讨了回归问题的学习,尤其是在深度学习模型中。已经大量研究了分类和简单线性回归方面的学习。但是,到目前为止,在深层回归模型中的学习基本上仍然是一个未触及的问题。在这项工作中,我们介绍了深层回归的学习方法,这些方法可以很好地推广并且对隐私攻击非常强大。我们提出了使用新颖的重量优化过程的盲点学习方法。随机初始化的模型,部分暴露于保留样本和原始模型的副本被一起使用,以选择性地烙印我们希望保留和擦除我们希望忘记的数据信息的数据。我们还提出了一种用于回归学习的高斯微调方法。现有的分类指​​标不直接适用于回归学习。因此,我们将这些指标适应回归设置。我们对计算机视觉,自然语言处理和预测应用程序进行回归学习实验。我们的方法在所有指标中显示出所有这些数据集的出色性能。源代码:https://github.com/ayu987/deep-regression-unlearning

With the introduction of data protection and privacy regulations, it has become crucial to remove the lineage of data on demand from a machine learning (ML) model. In the last few years, there have been notable developments in machine unlearning to remove the information of certain training data efficiently and effectively from ML models. In this work, we explore unlearning for the regression problem, particularly in deep learning models. Unlearning in classification and simple linear regression has been considerably investigated. However, unlearning in deep regression models largely remains an untouched problem till now. In this work, we introduce deep regression unlearning methods that generalize well and are robust to privacy attacks. We propose the Blindspot unlearning method which uses a novel weight optimization process. A randomly initialized model, partially exposed to the retain samples and a copy of the original model are used together to selectively imprint knowledge about the data that we wish to keep and scrub off the information of the data we wish to forget. We also propose a Gaussian fine tuning method for regression unlearning. The existing unlearning metrics for classification are not directly applicable to regression unlearning. Therefore, we adapt these metrics for the regression setting. We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications. Our methods show excellent performance for all these datasets across all the metrics. Source code: https://github.com/ayu987/deep-regression-unlearning

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源