论文标题

学习双重记忆词典用于盲人恢复

Learning Dual Memory Dictionaries for Blind Face Restoration

论文作者

Li, Xiaoming, Zhang, Shiguang, Zhou, Shangchen, Zhang, Lei, Zuo, Wangmeng

论文摘要

为了提高盲人恢复的性能,最近的作品主要处理这两个方面,即分别处理通用和特定的恢复。特别是,由于直接CNN在学习盲恢复中的映射能力有限,并且无法利用特定于身份特定的细节,因此一方面,通用恢复试图通过一般面部结构恢复结果,而一方面,由于直接CNN在学习盲恢复中的映射能力有限,因此无法推广到现实世界中的降级观察结果。相反,特定的恢复旨在通过相同身份的参考来合并身份特征,在同一身份的参考中,正确参考的要求严重限制了应用程序方案。通常,这是一项具有挑战性且棘手的任务,可以提高盲人恢复的光真实表现,并通过单个统一模型适应地处理通用和特定的恢复方案。本文并没有隐含从低质量图像到其高质量对应物的映射,而是通过双词词典来明确记住通用和特定特征来提出DMDNET。首先,通用词典从任何身份的高质量图像中学习了一般的面部先验,而特定词典则为每个人分别存储了身份的特征。其次,为了处理有或没有特定参考的降级输入,建议使用词典变换模块来读取随后融合到输入特征的双词字典中的相关细节。最后,利用多尺度词典有利于粗到精细的修复。此外,构建了一个新的高质量数据集,称为Celebref-HQ,以促进高分辨率空间中特定面部修复的探索。

To improve the performance of blind face restoration, recent works mainly treat the two aspects, i.e., generic and specific restoration, separately. In particular, generic restoration attempts to restore the results through general facial structure prior, while on the one hand, cannot generalize to real-world degraded observations due to the limited capability of direct CNNs' mappings in learning blind restoration, and on the other hand, fails to exploit the identity-specific details. On the contrary, specific restoration aims to incorporate the identity features from the reference of the same identity, in which the requirement of proper reference severely limits the application scenarios. Generally, it is a challenging and intractable task to improve the photo-realistic performance of blind restoration and adaptively handle the generic and specific restoration scenarios with a single unified model. Instead of implicitly learning the mapping from a low-quality image to its high-quality counterpart, this paper suggests a DMDNet by explicitly memorizing the generic and specific features through dual dictionaries. First, the generic dictionary learns the general facial priors from high-quality images of any identity, while the specific dictionary stores the identity-belonging features for each person individually. Second, to handle the degraded input with or without specific reference, dictionary transform module is suggested to read the relevant details from the dual dictionaries which are subsequently fused into the input features. Finally, multi-scale dictionaries are leveraged to benefit the coarse-to-fine restoration. Moreover, a new high-quality dataset, termed CelebRef-HQ, is constructed to promote the exploration of specific face restoration in the high-resolution space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源