论文标题

部分可观测时空混沌系统的无模型预测

Paraconsistent models of Zermelo-Fraenkel set theory

论文作者

Figallo-Orellano, Aldo, Slagter, Juan Sebastian

论文摘要

在本文中,我们构建了Fidel结构有价值的模型,该模型遵循为Heyting值为值模型开发的方法。回想一下,在通用代数意义上,菲德尔结构不是代数。采用验证Leibniz定律的模型,我们能够证明ZF的所有设定理论公理在这些模型上都是有效的。证明是基于莱布尼兹法的矛盾模型的存在。在这种情况下,讨论了使用标准解释图否定的代数旁观者法律模型的法律模型的困难,这表明Leibniz Law的模型的存在对于获取ZF的模型至关重要。

In this paper, we build Fidel-structures valued models following the methodology developed for Heyting-valued models; recall that Fidel structures are not algebras in the universal algebra sense. Taking models that verify Leibniz law, we are able to prove that all set-theoretic axioms of ZF are valid over these models. The proof is strongly based on the existence of paraconsistent models of Leibniz law. In this setting, the difficulty of having algebraic paraconsistent models of law for formulas with negation using the standard interpretation map is discussed, showing that the existence of models of Leibniz law is essential to getting models for ZF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源