论文标题
优化视觉变压器以进行医学图像细分
Optimizing Vision Transformers for Medical Image Segmentation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For medical image semantic segmentation (MISS), Vision Transformers have emerged as strong alternatives to convolutional neural networks thanks to their inherent ability to capture long-range correlations. However, existing research uses off-the-shelf vision Transformer blocks based on linear projections and feature processing which lack spatial and local context to refine organ boundaries. Furthermore, Transformers do not generalize well on small medical imaging datasets and rely on large-scale pre-training due to limited inductive biases. To address these problems, we demonstrate the design of a compact and accurate Transformer network for MISS, CS-Unet, which introduces convolutions in a multi-stage design for hierarchically enhancing spatial and local modeling ability of Transformers. This is mainly achieved by our well-designed Convolutional Swin Transformer (CST) block which merges convolutions with Multi-Head Self-Attention and Feed-Forward Networks for providing inherent localized spatial context and inductive biases. Experiments demonstrate CS-Unet without pre-training outperforms other counterparts by large margins on multi-organ and cardiac datasets with fewer parameters and achieves state-of-the-art performance. Our code is available at Github.