论文标题

预测良好的量子电路汇编选项

Predicting Good Quantum Circuit Compilation Options

论文作者

Quetschlich, Nils, Burgholzer, Lukas, Wille, Robert

论文摘要

一旦编码为量子电路,量子计算的任何潜在应用都需要编译,以便在量子计算机上执行。确定哪种Qubit技术,哪种设备,哪个编译器以及哪些相应的设置最适合考虑的问题 - 根据善良的衡量问题 - 需要专业知识,对于试图使用量子计算来利用其优势的不同域的最终用户来说,这是压倒性的。在这项工作中,我们将问题视为一项统计分类任务,并探讨了监督机器学习技术以优化量子电路编译的利用。基于此,我们提出了一个框架,鉴于量子电路,该框架可以预测这些选项的最佳组合,因此自动为最终用户做出这些决策。实验评估表明,考虑到具有3000个量子电路的典型设置,提出的框架产生了令人鼓舞的结果:对于所有看不见的测试电路的四分之三以上,确定了汇编选项的最佳组合。此外,对于超过95%的电路,确定了前三个中的汇编选项的组合 - 而中位数汇编时间则减少了一个以上的数量级。此外,最终的方法不仅为最终用户提供了最佳汇编选项的预测,而且还提供了从机器学习技术中提取明确知识的方法。这些知识通过两种方式有所帮助:它为在该域中进一步应用机器学习奠定了基础,并且还允许人们快速验证机器学习算法是否经过合理培训。作为慕尼黑量子工具包(MQT)的一部分,在GitHub(https://github.com/cda-tum/mqtpredictor)上公开获得相应的框架和预训练的分类器。

Any potential application of quantum computing, once encoded as a quantum circuit, needs to be compiled in order to be executed on a quantum computer. Deciding which qubit technology, which device, which compiler, and which corresponding settings are best for the considered problem -- according to a measure of goodness -- requires expert knowledge and is overwhelming for end-users from different domains trying to use quantum computing to their advantage. In this work, we treat the problem as a statistical classification task and explore the utilization of supervised machine learning techniques to optimize the compilation of quantum circuits. Based on that, we propose a framework that, given a quantum circuit, predicts the best combination of these options and, therefore, automatically makes these decisions for end-users. Experimental evaluations show that, considering a prototypical setting with 3000 quantum circuits, the proposed framework yields promising results: for more than three quarters of all unseen test circuits, the best combination of compilation options is determined. Moreover, for more than 95% of the circuits, a combination of compilation options within the top-three is determined -- while the median compilation time is reduced by more than one order of magnitude. Furthermore, the resulting methodology not only provides end-users with a prediction of the best compilation options, but also provides means to extract explicit knowledge from the machine learning technique. This knowledge helps in two ways: it lays the foundation for further applications of machine learning in this domain and, also, allows one to quickly verify whether a machine learning algorithm is reasonably trained. The corresponding framework and the pre-trained classifier are publicly available on GitHub (https://github.com/cda-tum/MQTPredictor) as part of the Munich Quantum Toolkit (MQT).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源