论文标题

用于实时仪表理论的复杂Langevin模拟的稳定内核

A stabilizing kernel for complex Langevin simulations of real-time gauge theories

论文作者

Boguslavski, Kirill, Hotzy, Paul, Müller, David I.

论文摘要

复杂的Langevin(CL)方法是一种克服符号问题的有前途的方法,该方法以量子场理论的实时公式出现。在过去的十年中,在有限密度QCD中使用了重要的应用,已经开发了CL的稳定技术。但是,对于实时配方所需的Schwinger-keldysh Time Countor,它们不足以su($ n_c $)仪表理论。在这些程序中,我们修改了实时CL方程的离散化,并引入了一种新颖的各向异性内核,该内核可以通过离散的时间轮廓进行CL模拟。将其应用于SU(2)Yang-Mills理论,在3+1维度中,我们获得了前所未有的稳定结果,可以使我们可以从第一原理中计算实时可观察结果。

The complex Langevin (CL) method is a promising approach to overcome the sign problem, which emerges in real-time formulations of quantum field theories. Over the past decade, stabilization techniques for CL have been developed with important applications in finite density QCD. However, they are insufficient for SU($N_c$) gauge theories on a Schwinger-Keldysh time contour that is required for a real-time formulation. In these proceedings we revise the discretization of the real-time CL equations and introduce a novel anisotropic kernel that enables CL simulations on discretized time contours. Applying it to SU(2) Yang-Mills theory in 3+1 dimensions, we obtain unprecedentedly stable results that may allow us to calculate real-time observables from first principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源