论文标题

生成流网络的差异视角

A Variational Perspective on Generative Flow Networks

论文作者

Zimmermann, Heiko, Lindsten, Fredrik, van de Meent, Jan-Willem, Naesseth, Christian A.

论文摘要

生成流动网络(GFN)是复合对象顺序采样的一类模型,该模型近似于能量函数或奖励方面定义的目标分布。 GFN通常是使用流量匹配或轨迹平衡目标训练的,该目标与轨迹相匹配。在这项工作中,我们根据向前分布和向后分布之间的Kullback-Leibler(KL)差异来定义GFN的变异目标。我们表明,GFN中的变异推断等于在从正向模型中采样轨迹时,将轨迹平衡目标最小化。我们通过优化反向KL差异的凸组合来概括这种方法。该洞察力表明,各种推理方法可以用作定义训练生成流网络的更一般目标家族的一种手段,例如,通过合并在变异推理中通常使用的控制变体来减少轨迹平衡目标的梯度方差。我们通过将其与两个合成任务的轨迹平衡目标进行比较,从数值上评估了我们的发现和提出的变分目标的性能。

Generative flow networks (GFNs) are a class of models for sequential sampling of composite objects, which approximate a target distribution that is defined in terms of an energy function or a reward. GFNs are typically trained using a flow matching or trajectory balance objective, which matches forward and backward transition models over trajectories. In this work, we define variational objectives for GFNs in terms of the Kullback-Leibler (KL) divergences between the forward and backward distribution. We show that variational inference in GFNs is equivalent to minimizing the trajectory balance objective when sampling trajectories from the forward model. We generalize this approach by optimizing a convex combination of the reverse- and forward KL divergence. This insight suggests variational inference methods can serve as a means to define a more general family of objectives for training generative flow networks, for example by incorporating control variates, which are commonly used in variational inference, to reduce the variance of the gradients of the trajectory balance objective. We evaluate our findings and the performance of the proposed variational objective numerically by comparing it to the trajectory balance objective on two synthetic tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源