论文标题

汉密尔顿的方程式在协变量的触觉平行等效的一般相对论

Hamilton's equations in the covariant teleparallel equivalent of general relativity

论文作者

Pati, Laxmipriya, Blixt, Daniel, Guzman, Maria-Jose

论文摘要

我们介绍了汉密尔顿的方程式,以触及平行的相对性(TEGR)等效,这是基于无弯曲,公制兼容和扭转联系的一般相对性的重新制定。为此,我们考虑了通过载体获得的TEGR的Hamiltonian,反对称,对称和无微量的,以及相位空间变量的不可痕迹分解。在文献中,我们首次考虑了根据Lorentz矩阵的旋转连接,我们首次在文献中介绍了Tegr的Hamiltonian。我们介绍了在Weitzenbock仪表和协变量配方中计算汉密尔顿方程所必需的数学形式主义,在此,对于后者,我们必须引入新领域:Lorentz矩阵及其相关的动量。我们还得出了Tetrad的共轭动量与传统上定义的指标的共轭动量之间的明确关系,这对于比较两种形式主义很重要。

We present Hamilton's equations for the teleparallel equivalent of general relativity (TEGR), which is a reformulation of general relativity based on a curvatureless, metric compatible, and torsionful connection. For this, we consider the Hamiltonian for TEGR obtained through the vector, antisymmetric, symmetric and trace-free, and trace irreducible decomposition of the phase space variables. We present the Hamiltonian for TEGR in the covariant formalism for the first time in the literature, by considering a spin connection depending on Lorentz matrices. We introduce the mathematical formalism necessary to compute Hamilton's equations in both Weitzenbock gauge and covariant formulation, where for the latter we must introduce new fields: Lorentz matrices and their associated momenta. We also derive explicit relations between the conjugate momenta of the tetrad and the conjugate momenta for the metric that are traditionally defined in GR, which are important to compare both formalisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源