论文标题
带宽有效的分布式神经网络体系结构,并应用于身体传感器网络
Bandwidth-efficient distributed neural network architectures with application to body sensor networks
论文作者
论文摘要
在本文中,我们描述了一种概念设计方法,用于设计分布式神经网络体系结构,该方法可以在传感器网络中执行具有通信带宽约束的传感器网络。不同的传感器通道分布在多个传感器设备上,这些传感器设备必须通过带宽限制的通信通道来交换数据以求解,例如分类任务。我们的设计方法从用户定义的集中式神经网络开始,并将其转换为分布式体系结构,其中频道分布在不同的节点上。分布式网络由两个平行分支组成,其中输出在融合中心融合。第一个分支从局部节点特异性分类器中收集分类结果,而第二个分支压缩每个节点的信号,然后重建在融合中心的多通道时间序列进行分类。当局部分类不足时,我们通过动态激活压缩路径进一步提高带宽增长。我们在模拟的脑电图传感器网络中的电机执行任务上验证了此方法,并分析了由此产生的带宽准确性权衡。我们的实验表明,与所示的电机执行任务相比,与集中式基线相比,所提出的框架可以减少带宽20因子20,而分类精度最小(最高2%)。提出的方法提供了一种将集中式体系结构平滑转换为低功率传感器网络的分布式带宽有效网络的方法。虽然本文的应用重点是可穿戴的脑部计算机界面,但提出的方法也可以应用于其他传感器网络样应用中。
In this paper, we describe a conceptual design methodology to design distributed neural network architectures that can perform efficient inference within sensor networks with communication bandwidth constraints. The different sensor channels are distributed across multiple sensor devices, which have to exchange data over bandwidth-limited communication channels to solve, e.g., a classification task. Our design methodology starts from a user-defined centralized neural network and transforms it into a distributed architecture in which the channels are distributed over different nodes. The distributed network consists of two parallel branches of which the outputs are fused at the fusion center. The first branch collects classification results from local, node-specific classifiers while the second branch compresses each node's signal and then reconstructs the multi-channel time series for classification at the fusion center. We further improve bandwidth gains by dynamically activating the compression path when the local classifications do not suffice. We validate this method on a motor execution task in an emulated EEG sensor network and analyze the resulting bandwidth-accuracy trade-offs. Our experiments show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss (up to 2%) in classification accuracy compared to the centralized baseline on the demonstrated motor execution task. The proposed method offers a way to smoothly transform a centralized architecture to a distributed, bandwidth-efficient network amenable for low-power sensor networks. While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.