论文标题

$ n $ -sesquicateGories的computads and String图

Computads and string diagrams for $n$-sesquicategories

论文作者

Araújo, Manuel

论文摘要

$ n $ -sesquicateGory是$ n $ blobular套装,具有严格的关联和Unital构图和搅拌操作,但是,不需要满足$ n $类别的Godement交换法律。在ARXIV:2202.09293中,我们展示了如何将其定义为单调的代数$ t_n^{d^s} $,其操作是简单的字符串图。在本文中,我们对Monad $ t_n^{d^s} $的Computads进行了明确的描述,我们证明了该单月的Computads类别是Presheaf类别。我们用它来描述用于表示$ n $ -sesquicateGorie中任意复合材料的字符串图符号。这是迈向半分布图$ n $类别的字符串图理论的一步。

An $n$-sesquicategory is an $n$-globular set with strictly associative and unital composition and whiskering operations, which are however not required to satisfy the Godement interchange laws which hold in $n$-categories. In arXiv:2202.09293 we showed how these can be defined as algebras over a monad $T_n^{D^s}$ whose operations are simple string diagrams. In this paper, we give an explicit description of computads for the monad $T_n^{D^s}$ and we prove that the category of computads for this monad is a presheaf category. We use this to describe a string diagram notation for representing arbitrary composites in $n$-sesquicategories. This is a step towards a theory of string diagrams for semistrict $n$-categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源