论文标题

除完整的两部分案例以外的分散排队网络的稳定性

Stability of Decentralized Queueing Networks Beyond Complete Bipartite Cases

论文作者

Fu, Hu, Hu, Qun, Lin, Jia'nan

论文摘要

Gaitonde和Tardos最近研究了一个排队网络的模型,在该网络中,排队在以后的回合中竞争服务器并重新归还返回数据包。他们量化了确保分散系统稳定性的额外处理能力的量,这是当排队使用无需重新学习的学习算法以及耐心和评估长时间策略的实用性时,排队将其从圆形调整到圆形时。在本文中,我们概括了Gaitonde和Tardos的模型,并考虑并非所有服务器都可以服务所有队列(即,基础图是一个不完整的两分图形),此外,当数据包需要在完成之前(即,当基础图是一个DAG时)需要经过一层以上的服务器。对于双方情况,我们获得的边界与Gaitonde和Tardos相当的界限,其因子在患者排队模型中的范围稍差。对于更通用的多层系统,我们表明,当gaitonde和Tardos的模型中,实用程序功能的直接概括和服务器的优先级规则可能会导致集中式和分散系统之间的无限差距,而排行榜不使用后悔的策略。我们定义了一个新的实用程序和一个服务优先规则,该规则知道队列长度,并表明这些规则足以恢复两部分图中观察到的集中式和分散系统之间的有界差距。

Gaitonde and Tardos recently studied a model of queueing networks where queues compete for servers and re-send returned packets in future rounds. They quantify the amount of additional processing power that guarantees a decentralized system's stability, both when the queues adapt their strategies from round to round using no-regret learning algorithms, and when they are patient and evaluate the utility of a strategy over long periods of time. In this paper, we generalize Gaitonde and Tardos's model and consider scenarios where not all servers can serve all queues (i.e., the underlying graph is an incomplete bipartite graphs) and, further, when packets need to go through more than one layer of servers before their completions (i.e., when the underlying graph is a DAG). For the bipartite case, we obtain bounds comparable to those by Gaitonde and Tardos, with the factor slightly worse in the patient queueing model. For the more general multi-layer systems, we show that straightforward generalizations of the utility function and servers' priority rules in Gaitonde and Tardos's model may lead to unbounded gaps between centralized and decentralized systems when the queues use no regret strategies. We define a new utility and a service priority rule that are aware of the queue lengths, and show that these suffice to restore the bounded gap between centralized and decentralized systems observed in bipartite graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源