论文标题
量化时间序列域中类条件生成模型的质量
Quantifying Quality of Class-Conditional Generative Models in Time-Series Domain
论文作者
论文摘要
生成模型旨在解决数据稀缺问题。即使有爆炸量的数据,由于计算的进步,某些应用程序(例如,医疗保健,天气预报,故障检测)仍然患有数据不足,尤其是在时间序列域中。因此,生成模型是必不可少的强大工具,但它们仍然缺乏质量评估的共识方法。这种缺陷阻碍了现代隐式生成模型在时间序列数据上的自信应用。受图像域的评估方法的启发,我们引入了Inpection Time分数(ITS)和Frechet Inpertion Time距离(FITD),以评估时间序列域上类有条件生成模型的定性性能。我们在80个不同的数据集上进行了广泛的实验,以研究拟议指标的判别能力以及两个现有的评估指标:对REAL(TSTR)的合成测试(TSTR)和综合测试的培训(TRTS)。广泛的评估表明,提出的评估方法,即其与TSTR结合使用,可以准确评估类别的生成模型性能。
Generative models are designed to address the data scarcity problem. Even with the exploding amount of data, due to computational advancements, some applications (e.g., health care, weather forecast, fault detection) still suffer from data insufficiency, especially in the time-series domain. Thus generative models are essential and powerful tools, but they still lack a consensual approach for quality assessment. Such deficiency hinders the confident application of modern implicit generative models on time-series data. Inspired by assessment methods on the image domain, we introduce the InceptionTime Score (ITS) and the Frechet InceptionTime Distance (FITD) to gauge the qualitative performance of class conditional generative models on the time-series domain. We conduct extensive experiments on 80 different datasets to study the discriminative capabilities of proposed metrics alongside two existing evaluation metrics: Train on Synthetic Test on Real (TSTR) and Train on Real Test on Synthetic (TRTS). Extensive evaluation reveals that the proposed assessment method, i.e., ITS and FITD in combination with TSTR, can accurately assess class-conditional generative model performance.