论文标题
有效的田间理论和非弹性暗物质来自Xenon1t
Effective field theory and inelastic dark matter results from XENON1T
论文作者
论文摘要
在这项工作中,我们扩展了Xenon1t核后坐力搜索,以研究手性有效田间理论(Cheft)(Cheft)和非弹性暗物质(IDM)模型中从操作员到尺寸至八的暗物质相互作用的个体信号。我们分析了Xenon1t检测器的两次科学运行中的数据,总计1 \ tonne $ \ times $ $年。对于这些分析,我们将感兴趣的区域从[4.9,40.9] $ \,$ kev $ _ {\ text {nr}} $延长至[4.9,54.4] $ \,$ kev $ _ {\ text {\ text {nr}} $,以增强我们在非Zero dolgies处达到信号的敏感性。我们表明,数据与仅背景假设一致,较小的背景过度透露率在20至50 $ \,$ kev $ _ {\ text {nr}} $之间达到峰值,从而最大的本地发现显着性为1.7 \,1.7 \,$σ$,$ \ otimes $ \ otimes $ \ otectim $ \ vexts $ _ $ _;暗物质粒子的Cheft Channel为70 $ \,$ GEV/C $^2 $,$ 1.8 \,σ$,用于50 $ \,$ GEV/C $^2 $的IDM粒子,质量分配为100 $ \,$ KEV/c $^2 $。对于每个模型,我们报告90 \,\%置信度(CL)上限。我们还使用Cheft报告了三种基准模型的暗物质相互作用的上限,我们研究了破裂的相互作用的效果。我们观察到速率驱动的取消在均质耦合的区域中,导致相对于持续的同胞降低了6个数量级的上限。
In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension-eight in a Chiral Effective Field Theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1\,tonne$\times$year exposure. For these analyses, we extended the region of interest from [4.9, 40.9]$\,$keV$_{\text{NR}}$ to [4.9, 54.4]$\,$keV$_{\text{NR}}$ to enhance our sensitivity for signals that peak at nonzero energies. We show that the data is consistent with the background-only hypothesis, with a small background over-fluctuation observed peaking between 20 and 50$\,$keV$_{\text{NR}}$, resulting in a maximum local discovery significance of 1.7\,$σ$ for the Vector$\otimes$Vector$_{\text{strange}}$ ($VV_s$) ChEFT channel for a dark matter particle of 70$\,$GeV/c$^2$, and $1.8\,σ$ for an iDM particle of 50$\,$GeV/c$^2$ with a mass splitting of 100$\,$keV/c$^2$. For each model, we report 90\,\% confidence level (CL) upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.