论文标题

时间棘轮的多定时分析

A multiple-timing analysis of temporal ratcheting

论文作者

Hashemi, Aref, Gilman, Edward T., Khair, Aditya S.

论文摘要

我们开发了两种计时的扰动分析,以研究粒子在流体罐中移动的粒子的示例性系统中的存在,以响应储罐的外部振动。我们考虑具有角频率$ω$和$αΩ$的两种模式振动,其中$α$是一个合理的数字。 It has been established, in other physical systems, that if $α$ is a ratio of odd and even integers (e.g., $\tfrac{2}{1}$, $\tfrac{3}{2}$, $\tfrac{4}{3}$), the system yields a net response: here, a nonzero time-average particle velocity.我们的一阶和三阶两态扰动方案分别预测了$α= 2 $和$α= \ tfrac {3} {2} {2} $,$ \ tfrac {4} {3} $。更重要的是,我们发现了这些$α$值的诱导净速度的幅度和方向的封闭式公式。

We develop a two-timing perturbation analysis to investigate the existence of temporal ratchets in an exemplary system of a particle moving in a tank of fluid in response to an external vibration of the tank. We consider two-mode vibrations with angular frequencies $ω$ and $αω$, where $α$ is a rational number. It has been established, in other physical systems, that if $α$ is a ratio of odd and even integers (e.g., $\tfrac{2}{1}$, $\tfrac{3}{2}$, $\tfrac{4}{3}$), the system yields a net response: here, a nonzero time-average particle velocity. Our first-order and third-order two-timing perturbation schemes predict the existence of temporal ratchets for, respectively, $α=2$ and $α=\tfrac{3}{2}$, $\tfrac{4}{3}$. More importantly, we find closed form formula for the magnitude and direction of the induced net velocities for these $α$ values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源