论文标题
独立和广义的自由合并
Conant-independence and generalized free amalgamation
论文作者
论文摘要
我们基于Kaplan,Ramsey和Shelah的“强大的Kim-Dividing”,对Kim独立,Conant独立的概括进行了研究。我们介绍了关于固定独立关系的公理,基本上将Conant的一些自由合并理论概括为“自由”公理,并表明该公理为进行Chernikov,Kaplan和Ramsey提供了正确的设置,以$ \ MATHRM {nsop} _ {1} _ {1} $相关的相关性。概括Conant的自由合并结果,以了解我们对$ \ Mathrm {nsop} _ {n} $层次结构的了解的限制,我们显示了使用Conant的方法以及以前的工作表明,任何理论的理论是,这种本地变体的等效条件是$ \ Mathrm {Nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {Nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {Nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {nsrm {nsrm} $ $\mathrm{NSOP}_{1}$ or $\mathrm{SOP}_{3}$ and is either simple or $\mathrm{TP}_{2}$, and observe that these theories give an interesting class of examples of theories where Conant-independence is symmetric, including all of Conant's examples, the small cycle-free random graphs of Shelah and (有限语言)$ω$ - 埃文斯(Evans and Wong)的hrushovski构造。 然后,我们回答了Conant的问题,表明Conant和Kruckman的通用功能结构是非模块化自由合并理论的示例,并表明任何免费的合并理论都是$ \ Mathrm {nsop} _ {1} _ {1} $} $} $或$ \ Mathrm {sop} _ {sop} _ {3} $ $ \ mathrm {nsop} _ {1} $免费合并理论很简单,并且仅当它是模块化时。 最后,我们证明了Conant独立为对称的每个理论都是$ \ Mathrm {NSOP} _ {4} $。因此,与Conant独立的对称性给出了$ \ Mathrm {nsop} _ {n} $ hierArchy $ heirarchy of $ \ mathrm {nsop} _ {1} $的下一个已知的新稳定性理论分隔线。我们解释了与一些已建立的开放问题的联系。
We initiate the study of a generalization of Kim-independence, Conant-independence, based on the "strong Kim-dividing" of Kaplan, Ramsey and Shelah. We introduce an axiom on stationary independence relations essentially generalizing the "freedom" axiom in some of the free amalgamation theories of Conant, and show that this axiom provides the correct setting for carrying out arguments of Chernikov, Kaplan and Ramsey on $\mathrm{NSOP}_{1}$ theories relative to a stationary independence relation. Generalizing Conant's results on free amalgamation to the limits of our knowledge of the $\mathrm{NSOP}_{n}$ hierarchy, we show using methods from Conant as well as our previous work that any theory where the equivalent conditions of this local variant of $\mathrm{NSOP}_{1}$ holds is either $\mathrm{NSOP}_{1}$ or $\mathrm{SOP}_{3}$ and is either simple or $\mathrm{TP}_{2}$, and observe that these theories give an interesting class of examples of theories where Conant-independence is symmetric, including all of Conant's examples, the small cycle-free random graphs of Shelah and the (finite-language) $ω$-categorical Hrushovski constructions of Evans and Wong. We then answer a question of Conant, showing that the generic functional structures of Conant and Kruckman are examples of non-modular free amalgamation theories, and show that any free amalgamation theory is $\mathrm{NSOP}_{1}$ or $\mathrm{SOP}_{3}$, while an $\mathrm{NSOP}_{1}$ free amalgamation theory is simple if and only if it is modular. Finally, we show that every theory where Conant-independence is symmetric is $\mathrm{NSOP}_{4}$. Therefore, symmetry for Conant-independence gives the next known neostability-theoretic dividing line on the $\mathrm{NSOP}_{n}$ hierarchy beyond $\mathrm{NSOP}_{1}$. We explain the connection to some established open questions.