论文标题

touplegdd:通过深度强化学习的精细设计的影响最大化的解决方案

ToupleGDD: A Fine-Designed Solution of Influence Maximization by Deep Reinforcement Learning

论文作者

Chen, Tiantian, Yan, Siwen, Guo, Jianxiong, Wu, Weili

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Aiming at selecting a small subset of nodes with maximum influence on networks, the Influence Maximization (IM) problem has been extensively studied. Since it is #P-hard to compute the influence spread given a seed set, the state-of-the-art methods, including heuristic and approximation algorithms, faced with great difficulties such as theoretical guarantee, time efficiency, generalization, etc. This makes it unable to adapt to large-scale networks and more complex applications. On the other side, with the latest achievements of Deep Reinforcement Learning (DRL) in artificial intelligence and other fields, lots of works have been focused on exploiting DRL to solve combinatorial optimization problems. Inspired by this, we propose a novel end-to-end DRL framework, ToupleGDD, to address the IM problem in this paper, which incorporates three coupled graph neural networks for network embedding and double deep Q-networks for parameters learning. Previous efforts to solve IM problem with DRL trained their models on subgraphs of the whole network, and then tested on the whole graph, which makes the performance of their models unstable among different networks. However, our model is trained on several small randomly generated graphs with a small budget, and tested on completely different networks under various large budgets, which can obtain results very close to IMM and better results than OPIM-C on several datasets, and shows strong generalization ability. Finally, we conduct a large number of experiments on synthetic and realistic datasets, and experimental results prove the effectiveness and superiority of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源