论文标题
通过数据驱动的MHD模拟对冠状磁场的演变和喷发
An Evolution and Eruption of the Coronal Magnetic Field through a Data-Driven MHD Simulation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-beta approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time-series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare with the ground-truth data, and discuss how to improve the accuracy and optimize numerical method.